
JOURNAL OF COMPUTATIONAL PHYSICS $1, 313-325 (1983) 

Optimal Spherical Designs 
and Numerical Integration on the Sphere 

WOLFRAM NEUTSCH 

Astronom~sr~e Institute der Un~uers~t~t, 
Auf dem Hiigel 71, D 53oLi Bonn. Federul Re~~~l~& of Germany 

Received May 4, 1982: revised November 17. 1982 

So-called spherical t-designs in three-dimensional Euclidean space k’ are considered. It is 
shown that the maximal possible value of t for designs which are permuted transitively under 
a finite group of Euclidean transformations is 9. This means that we can find a set of (60) 
points on the surface of the unit sphere in Ip’ which form an orbit under the icosahedral group 
such that the average of the function values at the 60 points and the average over the spherical 
surface are identical for all spherical harmonics of degree less than or equal to t = 9, while 
there is no such orbit for t = 10. Among all 9-designs which are orbits of the icosahedral 
group exactly one is optimal wtth respect to approximation of integrals of harmonics of tenth 
and eleventh order. This set is given in Section 2 of this paper. It IS very well suited for 
numerically evaluating Integrals of continuous functions over the sphere. a problem occurrmg 
very often in mathemattcs and science. as. e.g., physics, astronomy. etc. 

In mathematics and science one quite often has to integrate a function which is 
known numerically over a closed surface. For instance, the author was led to this 
problem in the context of an astrophysical investigation. To determine the structure 
of the heliopause, a contact discontinuity between the solar wind and interstellar 
matter, it is necessary to evaluate certain integrals of the heliopause pressure over the 
surface [ 11. 

If the surface is homeomorphic to the sphere, a reduction to the special case of 
integration over the unit sphere suggests itself. This may be effected by defining a 
number of selected points on the sphere and approximating the integral by a 
(weighted) sum over the function values at these points. It is useful to distribute the 
poin,ts as symmetrically as possible, i.e., to choose them in such a way that all of 
them are permuted transitively by a finite group of isometries of the sphere (and to 
give equal weights to them). 

In this paper it will be shown that there is-up to isomorphism- just one of these 
sets which is optimal in the following sense: It allows one to integrate exactly all 
spherical harmonics of degree less than 10 while any other set with the above- 
mentioned symmetry property gives a worse approximation for integrals of some lo- 
order harmonics. 
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In particular, it is found that no finite set of points on the sphere satisfies the 
requirement of symmetry and integrates all lo-order harmonics exactly. 

An analogous investigation of the four-dimensional case is in preparation. 

1. DEFINITIONS AND NOTATION 

First we have to introduce some notation. For any given positive integer n we 
denote by R” the Euclidean space of dimension n with the usual scalar product x S J 
and the induced metric. Let R, be the set of unit vectors (the “sphere”) 

l2,=(x=(x I,..‘, x”)Ilxl*=x:+-*‘+x;=l}. (1) 

The set of all Euclidean transformations leaving the zero vector o invariant forms the 
orthogonal group 0, (including reflections). Of course, a, is invariant under 0,. 

For any continuous functionf: R, -+ R we define the (integral) average (f>a,, by 

where f(x) means f(xr ,..., x,J, do, is the (Euclidean) surface element at x and 

vol n, = 
J dO.T=$$- (3) 
A”Es2, 

is the area of the sphere 0,. 
If M # 0 is a finite subset of X2,,, we may also define the M-average (f},,, off: 

w, = MM) - 1 y f(x)* (4) 
XEM 

M is said to integrate f exactly if the M-average and the integral average off 
coincide: 

w,, = wr,; (5) 

Let the space of n-variable-polynomials of degree <k be denoted by Poi(n, k). f 

DEFINITION 1 (Delsarte et al. 121). A finite subset M of On, is culled an n- 
dimensional (spherical) t-design for t E N if every polynomial P of degree <t is 
integrated exactly by M: 
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(It should be remembered that the spherical harmonics of degree G/C are just the 
restrictions of the Pol(n, ~~-polynomials to a,.) 

In the following we shall need a subspace of Pol(n, k), namely, the space of all 
homogeneous polynomials of degree k: 

Horn@, k) = (P E Pol(n, k) ] x * V,P = k . P). (7) 

Here V is the gradient operator 

v.7 = @&..., ~.~“P>. (f-9 

It is well-known that for any given polynomial P E PO@, k) there is exactly one 
harmonic polynomial H such that the restrictions of P and H are identical on 52,: 

A P(x) = H(x) (9) 
YER” 

and the degree of H is not iarger than the degree of P. A direct consequence of this 
fact is 

LEMMA 1 (cf. Delsarte et al.. [2]; Bannai [3]. The number of points of a 
spherical n~dimensional t-design M is bounded below bJ 

#Ma (-:;I)+ (“:“r”) if t = 2s is even, 

#M>2 (“3 if t = 2s + I is odd. 

(10) 

(11) 

The theory of the so-called tight t-designs, for which this bound is attained, is now 
developed quite well. Bannai and Damerell [4f have shown that tight designs in R” 
with n 2 3 can (and do} exist only for t = 1,2, 3,4,5, 7 and 11. Two spectacular 
examples are the minimal vectors of the &-lattice (n = 8, t = 7) and the Leech lattice 
(n = 24, t= 11). 

Tight designs are most “economical” in that they merely contain the minimum 
necessary number of points. But for practical applications (integration) the dimension 
n is prescribed in advance and we have to search for t-designs with t as large as 
possible. As the referees informed me, Seymour and Zaslavsky IlO] announced a 
proof that spherical t-designs of dimension n exist for all n and t while, on the other 
hand, Bannai [5] recently showed that t is bounded above (by about 19 to 23) if one 
demands that the points of the design are permuted transitively by a finite orthogonal 
group. Bannai’s proof is said to depend on the recently finished classi~~ation of the 
finite simple groups. 

Here we want to investigate a more modest question: Which I-designs exist for a 
certain value of n with the additional property of being permuted transitively under 
the action of a finite ~~-subgroup? This leads to 
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DEFINITION 2. Let G be a finite subgroup of O,, t E N. A subset M of Q, is 
called a t-orbit of G, if M is an orbit of G: 

M=xG={xR/gEG\; xE8, (12) 

and M is a t-design. 

DEFINITION 3. A t-orbit M of the finite group G < 0, is called optimal relative to 
the polynomial P, if 

(a) there is no (E + 1 )-orbit of G and 
(b) for any t-orbit M’ of G 

lu% - (%,,I G I@% - Wl.,,J (13) 

Finally we come to 

DEFINITION 4. Let G be a finite subgroup of 0,. For any function./“: R, + If? we 
introduce a new function fo by 

for all x E X2,. (14) 

Of course, f, is invariant under G, and f is invariant if and only if f =f, + 
Furthermore, if f is a (homogeneous) polynomial. so is f, . The degree of f(, is less 
than or equal to the degree off. 

From the definitions we get immediately 

PROPOSITION 1. Let G be a Jinite subgroup of O,, M a G-orbit oft .C?,, : M = x”, 
x E -R,. A necessary and suflcient condition for M to be a t-orbit of G is 

P(x) = m,, (15) 

for every G-i~vorio~t polynomial P of degree <t. 

Proof: Obvious because the Euclidean measure is invariant under O,,. 

2. THE ICOSAHEDRAL GROUP AND ITS ORBITS 

From now on we shall concentrate on the case n = 3, which is the most important 
one for applications. 

The finite subgroups of 0, have been known for some time (cf., e.g., Coxeter 161). 
They are 

(a) the cyclic groups, 
(b) the dihedral groups, 
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(c) the (extended) octahedral and icosahedrai groups. H and I, and their 
subgroups. 

The last two groups may also be described in terms of symmetric and alternating 
groups: 

HZZXS,; f-2 x4,. (1) 

The most interesting of all these groups is I. It is defined as the Coxeter group 
generated by the reflections in the roots of the root system of type H,. The Coxeter 
diagram is (cf. Coxeter and Moser [ 7 I) 

H,: s 
?I cl2 v3 

A generating set of roots is, e.g., 

v, = CL 030); qz = 4(-l. a, A’): 73 = (0, 0, 11, 

where 

A = -&I f 6): A’=$(-1 y/F) 

are the two solutions of the equation 

St +s= 1. 

Applying group I to qI, rz, q1 we find exactly 30 roots. namely. 

(l,O,O); j(lJJ’) 

PI 

(3) 

(4) 

(5) 

(6) 

and the vectors obtained from them by cyclically permuting the coordinates and/or 
changing signs of one or more coordinates; the operations 

(x,+x2,x,)+-+ (.Y**-q,x,) (7) 

and 

are elements of I. 
The (unit) fix vectors of the 6 Sylow-kubgroups of I, 

-(O, *sin+, *sin?): 
> A i 

211 - fsin -+I, *sin -$ 1 
; 

--j$ (*sin 7, *sin $, 0) 

(9) 
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are the 12 corners of a regular icosahedron. Its faces have centres (projected on 0,) 
at the 20 points 

(10) 

fixed under one of the 10 Sylow-3-groups in I. 
The centres of the 30 edges of the icosahedron are the fixed points of the 15 

involutions with determinant 1 in I: 

(+ 1, 0,O); (0, f 1,O); (0, 0, f 1); 

j(*l, a., *A’); :(*n’. f 1, &A); &c:n, A’, f 1). 
(11) 

These are the roots given in (6). 
Each of the sets (9), (10) and (11) are permuted transitively under I. They are the 

only Z-orbits of lengths unequal to 60 or 120. 
There are three Z-invariant homogeneous polynomials of degree 2, 6 and 10, 

namely, 
P,=P,(x)=x;+x;+x: (12) 

(which is even O,-invariant), the product P, (resp. P,,) of the planes invariant as a 
whole under each of the 6 Sylow-5groups (the 10 Sylow-3-groups) of I. They 
are-up to a constant factor-uniquely determined, 

P,=P,(x)=4x~x:x~+~(x~x~+x~x:+x~x:)+I'(x:x:+x:x:+x:x:), (13) 

P,,=P,,(x)=J5[x;+x~+.+2x:x:-2x:x:-2x:x;] 

x [(P - A") x:x:x: + 1*(x:x; + x:x: + x:x:> - 2*(x:x: + x:x: + x:x:>]. 

The R,-averages are (14) 

(p,)Q3 = -l/21; Pill),, = -5/77. (15) 

Z-invariance of the polynomials is obvious and it is also easy to see that there is no 
nontrivial polynomial in P,, P, and P,, vanishing identically, i.e., they are 
algebraically independent. 

Next we evaluate the Molien series of I: 

M,(e)=IZI-’ y [det(l -a~)]-‘= [(I -s*)(l -s6)(1 -&“‘)I-‘. (16) 
@El 

This shows that Z has three basic invariants with degrees 2, 6 and 10. We choose 
them as P,, P, and P,,. 
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Hence a polynomial is I-invariant if and only if it can be written as a polynomial 
in P,, P, and P,,. 

As Pz(x) = 1 for all x E R,, we have by proposition 1: 

LEMMA 2. Let x E 0,. XI is a t-orbit of I if and only if for every a, b > 0, 
(a, b) # (0,O) with 10a + 6b < t 

(17) 

holds. 

Now we are able to formulate the central result of our investigations, 

MAIN THEOREM. For all x E R, is x’ a Sdesign. If furthermore PJx) = -l/21, 
x1 is even a 9-design (there is an infinity of such x). I does not possess a lo-orbit. The 
60 vectors given in Table I form a 9-orbit A4 of I which is optimal relative to every 
polynomial of degree < 11. 

Proof Q3 is a compact set and P, a continuous function, so P, attains its mean 
value which is (P6)nj = -l/21. Hence by the preceding lemma the first two 
assertions are proven. All x E 0, with 

Ps(x) = (Ps)n, = -w (18) 

therefore lie on a curve K which is the intersection of 0, and the surface F with 
defining equation ( 18). 

J2, is compact, F topologically closed, so K = L13 f7 F is compact, too. Hence there 

TABLE I 

The Optimal 9-Orbit of I 

x,=0.7950079322147038205344672 
x,=0.6065990337246679914486006 
x, = o.ooooo 00000000000000000000 

~‘,=0.8882528931620301775150026 
y,=O.4557255176322373522904353 
~,=0.0576285551451042821776299 

r,=0.8306243380169258953373727 
~,=0.5489704785795637092709707 
z,=0.0932449609473263569805355 

No&. I contains the 3 4 + 3 8 + 3 . 8 = 60 
images of (x,.x2,x,). (yl,y2, Y,) and (z,,z,,z,) under 
cyclic permutations and/or sign changes of the coor- 
dinates. 
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must be points where the restriction P,,,, of P,, to K is maximal (or minimal). Let 
XE I( be a regular point with P,,!, extremal in X. The condition for this is 

t, . V7*P,, = 0 (19) 

with f, = tangent vector at K in X. t, is tangent to both surfaces, J2, and F. so it must 
be orthogonal to V,YP2 and V,P, and (19) implies 

S(x) = (V,Pz A V,P,) * V,P,” = 0. (20) 

If, however, x is a singular point of K, either F is singular at x: 

v, P, = 0 

or the tangent planes of R, and F in x coincide: 

(21) 

VIP, A VIP, = 0. (22) 

Both (21) and (22) lead us back to (20), so we only have to discuss the latter 
equation for x E K. 

There are exactly 15 planes, each containing two opposite edges of the 
icosahedron. They all are permuted transitively by I. Their product is a homogeneous 
polynomial P,,(X) of degree 15 in s. By definition, the set of all ?I with 

P,,(x) = 0 (231 

is the union of the 15 planes, and so is I-invariant, while P,, itself is not (its sign 
changes if we apply a reflection in I). 

The function S on the left-hand side of (20) also is homogeneous of degree 
(2 - 1) + (6 - 1) f (10 - 1) = 15 and I-invariant up to sign, because Pz. P, and P,,, 
are. The latter three polynomials are even functions of .Y,; hence the third 
components of their gradients vanish for .x3 = 0, i.e., (20) holds true for all x with 
x3 = 0. 

But -y3 = 0 is one of the 15 planes just mentioned, so all of them must be solutions 
of (20). Thus S and P,, are identical up to a nonzero factor, and (20) is equivalent to 
(23). 

For reasons of transitivity on the 15 planes it is sufficient to solve 

P,(x) = 1; P&Y) = - $- (24) 

for x in one of the planes, e.g.. for .y3 = 0. We introduce the abbreviations 

u = x;: 1’ = XI 0, = 0) 

and get from (24) the conditions 

P2=U+t>=l 

(25 1 

(26) 
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and 

P,=u?l(n’u+i.‘ll)=-&. (27) 

Elimination of one of the unknowns in (27) with the help of (26) provides us with 

8+A u”-- 
5 

u’+ 3+1 1 

-u- 
-----=O 

5 216 

and 

(28) 

(29) 

It is easily found that there are just three real pairs (u, v), namely, 

(u,, u,) z (0.632,0.368); (u,, u2) z (0.032,0.968): (u,, u3) z (1.060, -0.060) 

(30) 

the last of which is not admissible, for by construction of U. P 

o<u, u< 1. (31) 

One of the remaining couples (u,, v,) and (u,, vt) must lead to the maximum, the 
other to the minimum of P,, along K. 

Numerically we find 

P&4,, 01) z -0.055; P,,(uz, VI) z 0.017 (32) 

so the first value is the minimum, the second the maximum (in both cases, four 
combinations of the square roots x, = +fi, x2 = && are possible, but they lie in 
one Z-orbit). 

Because even the minimum is greater than the a,-average of P,,, 

we have found that the orbit M = x’ belonging to (u,, u,) is a g-orbit of Z optimal 
with respect to PiO, and that there cannot be any other with the same property. In 
particular, Z does not possess a lo-orbit. 

To finish the proof, we only have to verify that M is optimal with respect to every 
polynomial Q of degree at most 11. Clearly by an earlier argument we may restrict 
our attention to the Z-invariant Q’s of degree <l 1, i.e., to P, and P,, . Optimality 
relative to P,, was shown above and M as a g-design clearly is optimal relative to P,, 
this proving the theorem. It should be remarked that the design which is derived from 
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the second solution (u,, VJ in (30~the “worst-possible” 9-orbit of Z-is mentioned 
by Goethals and Seidel [8] as the “improved football”, but the authors do not 
consider the question of optimality in the sense defined above, rather they give many 
other related formulas in a more general context (spherical designs which are not 
orbits of any group, more complicated cubature formulas, etc.). I am grateful to the 
unknown referees who directed my attention to this interesting paper. 

3. THE OTHER THREE-DIMENSIONAL FINITE GROUPS 

To complete the discussion, we note 

THEOREM. There is no 9-orbit for any of the groups listed in Section 2, except the 
icosahedral group Z and its commutator group I’. 

Proof. This is obvious for the cyclic and dihedral groups, because their orbits are 
subsets of at most two planes intersecting the sphere R,. 

So we are left with the subgroups of H and I. 
A 3-dimensional 9-design must consist of at least 30 vectors by Eq. (1.11). 
The only subgroups of H and Z which are large enough are H, Z and I’. The 

verification that H does not possess 9-orbits is carried out along the same lines as 
done for Z in the last section, so the details are left to the reader. 

Z is generated by I’ and the inversion 

x = (x1,x*, x3) k+ -x = (-x1, -x*, -x3). (1) 

But if XI’ is a t-orbit (t E N) of I’, so is --xl’ = (-x)“. The union of both these sets 
has the same property and is an orbit of I; hence we do not get anything new for I’ 
instead of I. 

4. CONCLUSION 

We have shown that only two of the finite three-dimensional groups have 9-orbits 
(definition in Section l), namely. the icosahedral groups Z and I’. Furthermore. no 
IO-orbits of Z or I’ exist and among the 9-orbits there is-up to the choice of the 
representation of Z-a unique set M which is optimal with respect to all polynomials 
of degree less than 12 in three variables. 

This orbit contains 60 points and is most useful for integration on the sphere, for 
its allows to integrate all spherical harmonics of degree at most 9 exactly and 
minimizes the integration error for harmonics of 10 and 11 order. 
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APPENDIX 

To illustrate the degree of approximation of integrals over the sphere by our 
formula we shall consider a numerical example the exact solution of which is known. 

Let E be an ellipsoid with principal semi-axes a, b, c. 
The surface of E consists of the points with Cartesian coordinates (ax, by, cz) 

where (x, y, z) represents an associated unit vector, i.e., a point of the unit sphere 03. 
The surface area FE of E is given by 

FE = db2c’x2 + c2a2y2 + a2b2z2 dOC,.s,r,. (1) 

The integral in (1) may be reduced further to the form 

FE = na2b2c2 

x [a’ + b* - (a’ + b2 - 2~‘) t2j dt 

(if a > b > c), or 

1’ 
I 

FE = 2nc2 + 2n 
a2b2 - (a2 - c2)(b2 - c’) t2 

dt, 
/=o \/(a’ - (a’ - c’) t2)(b2 - (b2 - c2) t2) 

which is equivalent to 

FE = 2nc2 + J2& I;@,, k) + 2nb dm E(yl, k), (4) 

(2) 

(3) 

where 

cosfp=& sin rp = m 
a a ’ 

(6) 

Here, E and F are incomplete elliptic integrals of the first and second kind, respec- 
tively (in Legendre’s notation, cf., e.g., Abramowitz and Stegun 191. We have 
calculated the surface areas of a number of ellipsoids with different a, b, c. The 
results are listed in Table II, where the “exact” values are found by Eqs. (4), (5), and 
(6). Furthermore our numerical integration method (averaging over the set M, 
Table I) is applied to (1). For comparison the results of averaging over the six 
vertices of a regular octahedron: 

M’ = {(*L O,O), (0, fl, O), (O,O, *I)) (7) 
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TABLE II 

Surface Area of An Elhpsoid with Principal Semi-axes a, 6. c 

a b C 

Exact Numerical Relative Numerical Relative 
value value error value error 

(4) 0-f) (10 h, CM’) (IO “) 

1 1 I 12.56637 12.56637 0 
1 1 1.5 16.92223 16.75516 -9873 
1 1.1 1.2 15.18907 15.16342 -1661 
I 1.1 1.3 16.09956 16.04307 -3408 
I 1.1 1.4 17.02229 16.92271 -5638 
1 1.1 1.5 17.95580 17.80236 -8189 
I 1.2 1.2 16.12156 16.08495 -2298 
I 1.2 1.3 17.07033 17.00649 -3702 
I 1.2 1.4 18.03258 17.92802 -5643 
I 1.2 1.5 19.00673 18.84956 -7952 
I 1.5 2 27.91 159 27.22714 -23643 
I2 3 48.94900 46.07669 -58680 
13 5 108.38537 96.34217 -113091 
13 6 129.02373 113.09734 -124156 
23 5 135.12428 129.85250 -36525 
24 5 166.81746 159.17403 -4603 7 
34 5 199.54696 196.87314 ~ 12945 
34 6 231.57445 226.19467 -21853 
35 8 346.65038 330.91443 -43 104 
36 8 396.93240 376.99112 -49953 
45 7 353.12337 347.66959 -14630 
45 8 394.47189 385.36870 -21583 

12.56637 
16.91822 
15.18864 
16.09793 
17.01866 
17.94935 
16.12200 
17.06968 
18.02976 
19.00064 
27.88644 
48.88215 

108.62688 
129.12957 
134.77518 
166.85563 
199.45506 
231.24822 
345.8207 1 
396.81333 
352.83158 
393.86966 

0 
237 

28 
101 
213 
359 
-27 

38 
156 
320 
902 

1368 
-2223 

-820 
2590 
-229 

461 
141 I 
2399 

300 
827 

1529 

Note. The exact values of the surface areas are found via Eq. (4). the numerical approximatrons by 
averagmg over the optimal 9-design M (Table I) and the set M’ (Eq. (7)) used m Abramowitz and 
Stegun 19. Eq. 25.4.65 1, respectively. 

(recommended in Abramowitz and Stegun [9, formula 25.4.651) are included as well. 
The relative errors of both approximations are given also. It is seen that the results of 
our method are much closer to the real areas (by a factor of ca. 10 to loo), the 
largest deviation amounting to less than 0.26 percent in a case where the integrand 
varies over quite a large range. The other formula give errors up to more than 12.4 
percent in the cases which we investigated. 

Similar conclusions hold for a lot of other examples which we do not discuss 
further. 
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